
D-AiB2 445 THE DEFINITION OF PRODUCTION QUALITY RDA* CONPILERCU) i/i 7
AEROSPACE CORP EL SEGUNDO CA N 0 HOGAN ET AL
20 MAR 87 TR-- -29820")-- SD-TR-87-29

UNCLASSIFIED F847-5-C-86 F/G i2/5L

EhhhhmhohhhhhE

1.0
Lui 111 L 6

.111.25 jj.4 16

MICROCOPY RESOLUTION TEST CHART

tIOM4AL UREAU Of TNAO]&

K- Vic -Kr

REPORT SD-TR-87-29

."

The Definition of a

IN Production Quality Ada* Compiler 7

Prepared by

M. O. HOGAN
Systems Software Engineering Department

E. P. HAUSER
Systems Software Engineering Department

S. M. MENIC'NELLO
" .Mission Software Department

(.JLot 0 81 20 March 1987

DPrepared for

SPACE DIVISION
AIR FORCE SYSTEMS COMMAND

Los Angeles Air Force Station
P.O. Box 92960, Worldway Postal Center

Los Angeles, CA 90009-2960

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED r

*Ada is a registered trademark of the U.S. Government, Ada Joint Program Office

A..

This report was submitted by The Aerospace Corporation, El Segundo, CA

90245, under Contract No. F04701-85-C-0086-P00016 with the Space Division,

P. 0. Box 92960, Worldway Postal Center, Los Angeles, CA 90009-2960. It was

reviewed and approved for The Aerospace Corporation by E. R. Frazier, Director,

Systems Software Engineering Department, Engineering Group.

Mr. Giovanni Bargero, SD/ALR, approved the report for the Air Force.

This report has been reviewed by the Public Affairs Office (PAS) and is

releasable to the National Technical Information Service (NTIS). At NTIS, it

will be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication.

Publication of this report does not constitute Air Force approval of the

report's findings or conclusions. It is published only for the exchange and

stimulation of ideas.

Giovanni Bargero

SD/ALR

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
a. REP RT SEC RITY C ASSIFI ATIONlb. RESTRICTIVE MARKING M r l w l w

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION iAVAILABILITY OF REPORT

2b. ECLSSIICATON DOWGRADNG CHEULEApproved for public release;
Zb. ECLSSIFCATON DOWGRAING CHEULEdistribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

TR-0086A(2902-03)-1 _______ SD-TR-87-29
6a. NAME OF PERFORMING ORGANIZATION 16b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

The Aerospace Corporation (if applicable)

Engineering GrouR _______ Space Division
6.ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Los Angeles Air Force Station

El Sestundo. CA 90245-4691 _ ______ Los Angeles, CA 90009-2960
Ba. NAME OF FUNDING/ISPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable)

I F04701-85-C-0086-P00016
Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM IPROJECT ITASK IWORK UNIT
ELEMENT NO. INO. INO. ACCESSION NO.

11. TITLE (include Security Clasification)

The Definition of a Production Quality Ada Compiler
12. PERSONAL AUTHOR(S)

-,. ugr-m4i.hnsal n- Ruor Wier hii P..t Menighiello. Suzanne M.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yar;AMonth 3ay) S4PAECON

FROM TO 20 March 1987 47ECON

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continu, on reverse if necessary Adt identif'y by btock number)
FIELD GROUP SUB-GROUP Ada compiler, selection; Ada compiler, procuring; Ada

compiler, specifications; Ada compiler, evaluating; (cont.)

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report specifies a set of minimal requirements that an Ada compiler must have to
be considered production quality. Additional criteria are given for features that
increase a compiler's usefulness for production use. The report can serve as a
guideline for evaluating an existing Ada compiler for potential project use. or it can
be used in preparation of specifications for procuring an Ada compiler.

DO FORM 1473.64 MAX 83 APR edition mnay be used until exhausted. SCRT LSIIAINO HSPG
All other editions are obso~ete. SCRT LSIIAINO HSPG

Unclassified
Icumlty CLA1SSIVCATmO11 OP y,.gS P&Gg leVoh, D... seeoed'

4 EC U0a1404 (mI884"d)

14.. AmSfTACI .IUw.d

18. SUBJECT TERMS (continued)

Ada compiler, requirements; production quality Ada compiler; project Ada

compiler

FAcCCa ior -

IDTIC TAf,3 I

Dist4;~ T

A-1

SSCWAsTy CLAI eC AhIO1 Of Taft PAegrU(. 8..m

EXECUTIVE SUMKARY

This studyw funded by Project Element 64740F, was conducted for Space

Division's Directorate of Computer Resources, SD/ALR,9 to develop a

quantifiable definition of the teriz-production quality~as applied to Ada

compilers. This report specifies minimal and desirable requirements for the

important characteristics of an Ada compiler that are beyond those required

for validation, including performance, capacity, user-friendliness,

reliability, documentation, and certain language features left to the

discretion of the compiler builder.

- The requirements given in this report are applied to the complete

compiler system, which includes the compiler, the Ada library manager,

linker/loader, and Ada run-time system. Certain requirements given are

minimal criteria that all compilers must meet to be considered production

quality, while other requirements give criteria for highly desirable features

that the ideal production quality Ada compiler should have but which fall into

a gray area when quantifying them. No method is given for how these

additional criteria should be ranked in Importance to rate a compiler, but by

implication the closer a compiler meets each requirement, the better it is.

The following suumarizes the minimal capabilities that an Ada

compiler must have to be considered production quality in the areas of

performance, quality assurance, and documentation.

The compiler must have a minimum compilation speed of 500 Ada source

statements (essentially the number of executable statements plus the number of

declarations) per minute of elapsed wall-clock time for a dedicated host

computer that executes at a rate of 1 million instructions per second. This

compilation speed is considerably less than would be expected from a compiler

of an older programming language and should increase as Ada compilers mature.

The compiled code produced by the compiler must occupy no more than 30%

II

I

additional space and take no more than 15% longer to execute than an

equivalent hand-coded assembly language program.

Before being released for production use, the compiler must pass the

required validation process and undergo a field evaluation period of 20

site-months (number of testing sites times months of testing). After release,

the compiler must exhibit no more than 1 new error for each 250,000 new Ada

source statements compiled.

Certain documents should be supplied by the compiler vendor: a

User's Manual, Run-Time System Manual, Version Description Document, and

Installation Manual should-be delivered with the compiler. The Validation

Sugary Report from the Ada Validation Facility must be provided. Documents

required by DOD-STD-2167 are required for compilers that are developed under

contract to a DOD military program.

The following summarizes requirements in the gray area of highly

desirable but less quantifiable features that a production quality compiler

should have. These criteria deal with issues of user interface,

implementation of language features, and compiler capacity limits.

The compiler should provide the user with the option of performing

syntax checking only, without producing object code. It should also be able

to produce various Ada source code, cross reference, and assembly code

listings at the option of the user. Diagnostic messages should explain errors

clearly. The ability to interface with external tools is also required, e.g.

compatibility with an existing symbolic debugger. While not part of the

compiler system proper, these tools are necessary in a complete programming

environment. Other characteristics are specified in the body of the report to

ensure that the compiler is "user-friendly."

2

Certain desirable features of the Ada language are specified that are

either not required by the Ada Language Reference Manual (ARM) or are left to

be defined by implementors. Such features include the pragma INLINE, which

causes the object code for a subprogram to be expanded inline at the point of

call; representation specifications, which specify how the compiler is to

represent certain program elements in the target computer hardware; and

interfacing with other languages. The predefined data types provided by the

compiler should use the full capabilities of the target computer. Additional

implementation issues, such as how task scheduling and exception handling are

done, are also specified.

The ARM does not specify capacity limits for the compiler, so minimal

capacities that a production quality compiler should have are given in this

report. A few of these are as follows: at least 1024 compilation units in a

program, 4096 Ada source statements in a compilation unit, 120 characters in a

source line, 4096 declarations in a compilation unit, 64 parameters in a

subprogram, 32 dimensions in an array, 65,535 characters in a string, 65,535

elements in an array, 16 tasking priority levels, and 64 levels of block,

loop, or subprogram nesting. Capacity requirements for other language

elements are given in the report.

3

PREFACE

This study to define the requirements for a Production Quality Ada

Compiler was conducted for Space Division's Directorate of Computer Resources,

SD/ALR, as part of its participation in the Program Element 64740F technology

transition effort. The results of this study, as contained herein, are

intended to be used as guidelines for evaluating an existing Ada compiler or

for selecting one of several potential compilers for project use. It will

also be useful in preparing a specification for procuring a production quality

Ada compiler. The conclusions drawn are not absolutes but rather are based in

part on several reviews by a large number of compiler users and vendors, and

on compiler statistics from validation summary reports.

H. Lubof sky
Systems Support Office
Computer Resources Management

and Standards Office

4

CONTENTS

EXECUTIVE SUMhMARY 1

PREFACE......... ... 4

1 INTRODUCTION... 7

1.1 Definition of anAda Source Statement 9

2 PERFORMANCE REQUIREMENTS...1.1

2.1 Benchmarks Used... 11
2.2 Definition of Benchmark Test Units 11
2.3 Definition of Time Used.. 12
2.4 Host System Performance Requirements 12
2.5 Target System Performance Requirements 13

3 COMPILER CAPACITY REQUIREMENTS 15

3.1 Program Limitations.. 15
3.2 Compilation Unit Limitations 16
3.3 Program Unit Limitations 16
3.4 Task Limitations... 17
3.5 Subprogram Limitations 17
3.6 Package Limitations................................... 18
3.7 Statement Limitations.. 18

*3.8 Expression Limitations 18

4 USER INTERFACE REQUIREMENTS.............................. . .. 19

4.1 User Inputs.. 19
4.2 Compiler Listings 20
4.3 Diagnostic Messages....................................... 23

5 EXTERNAL TOOLS INTERFACE REQUIREMENTS 25

5.1 Listing Tools ... 25
5.2 Linker/Loader............ I 26
5.3 Symbolic Debugger... 27

6 ADA LANGUAGE REQUIREMENTS.............................. 29

6.1 General 29
6.2 Character Sets.................... 29
6.3 Data Representation........ 30
6.4 Subprograms 33
6 .5 Tasking 34
6.6 Exceptions 36

5

CONTENTS (Continued)

6.7 Generics.. 37
6.8 Interface with Other Languages 38
6.9 Unchecked Programmning... 39
6.10 Input/Output... 39
6.11 System Information.. 40
6.1.2 Pragmas.. 41

7 QUALITY ASSURANCE AND RELIABILITY REQUIREMENTS o.........43

7.1 Validation... . 43
7.2 Field Testing 43
7.3 Maintenance-.............o.....................44
7.4 Configuration Management o...... o..............44
7.5 Error Rate. o........ o...........................44

8 DOCUMENTATION REQUIREMENTS-...................... o....o............45

8.1 Validation Summary Report .. o.................... 45
8.2 Ada Language Reference Manual (ARM).o.o......o..............o.....45
8.3 User's Manual o...... o.........o..................46
8.4 Run-time System Manual.............. 46
8.5 Version Description Document o.......o............... o......46
8.6 Installation Manual....... _................... 47
8o7 Maintenance Manual-.....o.......................................47
8.8 Software Product Specification o....o.............. o........48

RE FEREFNCES...__.. o............. o............. 49

ACRNYS o............................... o...........................51

6

SECTION 1

INTRODUCTION

Many times a compiler vendor or project manager will indiscriminately

refer to a compiler as being "production quality," implying that this compiler

is somehow of a superior quality to others. Yet little objective evidence is

offered to justify the use of this term. When pressed for a definition of

"production quality," little more is said than that the compiler is ready for

use in a production environment. At one meeting, Lt. Col. Ed Koss, then

Director of Computer Resources at Space Division, asked this very question

about the Air Force Intermetrics Ada compiler. Not content with the usual

vague reply, he proposed a project to develop a definition of a production

quality Ada compiler; hence this report.

The purpose of this report is to provide a measurable definition of a

production quality Ada compiler. It is intended that the criteria set forth

here can be used to measure the validity of a vendor's claim of production

quality for his Ada compiler.

One might question the need for such a definition when all Ada

compilers must be validated for conformance to the Ada Language Reference

Manual [ARM 83] (ANSI/MIL-STD-1815A) by an extensive suite of tests, the Ada

Compiler Validation Capability (ACVC). However, by intent the ACVC does not

test for many traditionally important characteristics of a production quality

compiler, such as performance, capacity, user-friendliness, language tools

interface, reliability, and user documentation. The quality of Ada compilers

can vary further in areas of the language that are left as implementation

defined by the ARM, or that are not required in order to pass validation.

Thus, the task of defining a production quality Ada compiler presents the

challenge of specifying language requirements beyond those required for

validation as well as specifying the traditional areas common to all compilers.

Before defining the characteristics of a production quality Ada

compiler, we must first define a compiler. Strictly speaking, an Ada compiler

7

is just one component of a larger system that includes the host operating

system, the linker/loader, the Ada run-time system, and the target computer

operating system. In addition, Ada's separate compilation feature requires a

separate library manager to keep track of compilation units. Separate

compilation causes some checking traditionally done by the compiler to be

deferred to the linker/loader. Since some of the functionality usually

associated with the compiler proper is now being distributed to these other

components, the term compiler shall be taken to mean the compiler proper along

with the Ada library manager, the linker/loader, the Ada run-time system, and

any other component required to convert an Ada program from source code into

an executable load module.

We specifically excluded from this definition any specification of

host or target computer hardware and operating system, although the complete

hardware and operating environment for both the host and target computers must

be specified for each validated comriler.

The original goal of this report was to provide a minimal set of

criteria that must be met by all production quality Ada compilers. In the

process of researching such criteria, it became clear that the evaluation of a

compiler can never be reduced to a simple formula. The evaluator must always

make qualitative judgments about the relative importance of various aspects of

the compiler. To assist in evaluating the importance of the requirements

given in this report, we have divided them into two groups. The requirements

of one group are considered to be fundamentally essential for a production

quality compiler and must be met exactly. These requirements are designated

by (M), for "minimal." The requirements of the other group, which are not

marked by any symbol, are important compiler features for production use and

should be met as closely as possible. The degree to which each of these

requirements contributes to production quality is not clear. Eventually,

these additional criteria might be weighted and used to give a compiler a

numerical rating, although we have not done this due to the difficulty of just

identifying the necessary requirements.

8

The Ada Programming Support Environment (APSE) Evaluation and

Validation (E&V) Team is developing a quantitative and qualitative evaluation

capability for Ada programming support environments, which include Ada

compilers. Until such time as the E&V technology becomes available, this

report should provide criteria to assess the quality of validated Ada compilers.

In specifying these criteria we have not sought fairness. If some

compiler cannot meet a requirement, the overall impact on the user is that

this compiler is less production quality than one that does, even if the

reason has to do with hardware or operating system limitations. We are on the

side of the compiler user and have tried to specify features that users want

and need without dictating compiler design.

This report is divided into eight sections including this

introduction. Sections 2 and 3 define the primary performance and capacity

requirements for the compiler. Section 4 deals with the interaction of the

compiler with the user. Section 5 concerns the interface of the compiler with

external tools such as a symbolic debugger. Section 6 gives Ada language

requirements. Section 7 states compiler quality assurance and reliability

requirements, and Section 8 lists the required documentation. Most of the

requirements are followed by a rationale that explains the requirement or

gives some justification for making it. The following definition of an Ada

source statement applies to the rest of this report.

1.1 Definition of an Ada Source Statement. An Ada source statement

shall be defined to mean: a basic declaration, a record

component declaration, a simple statement, a compound statement,

an entry declaration, terminate-alternative, WITH clause,

USE clause, generic parameter declaration, proper body or

body stub, representation clause, alignment clause, or

component clause.

Rationale

The number of Ada source statements should be equivalent to the number of

semicolons in a specified amount of code, provided that the semicolons in

comments, and in the formal parts of subprogram declarations, entry

9

declarations, and accept statements are not counted. The number of Ada source

statements as defined here eliminates confusion over multiple statements on a

source line or a single statement occupying multiple lines. The presence or

absence of comments has no effect on the number of source statements.

10

SECTION 2

PERFORMANCE REQUIREMENTS

After correctness, performance is the most important compiler

selection criterion. Compiler performance refers to the execution speed of

the compiler on the host computer and the memory size and execution speed on

the target computer of the object programs generated by the compiler.

2.1 Benchmarks Used. All performance requirements of this

section shall be met using the programs of the test suite

formulated by the Performance Issues Working Group (PIWG)

of the SIGAda Users' Committee.

Rationale

Compiler performance is measured by benchmark programs. In the absence of

widely accepted and comprehensive benchmark programs, the requirements of this

section shall measure the compiler's performance in compiling and executing

the performance benchmarks distributed by the Performance Issues Working Group

of the Users' Committee of the ACM Special Interest Group on Ada. Use of the

ACVC tests was rejected as a basis for performance criteria because they are

very short and compiler overhead time becomes disproportionate, all parts of

the language are tested evenly without weighting according to actual usage,

and very little computation is done.

2.2 Definition of Benchmark Test Units. The requirements

in this section assume a single compilation unit without

any context clauses (WITH clauses) or generic instantiations.

Rationale

Some users have reported that the compilation speed of some Ada compilers is

much slower when generics or WITH clauses are used. Although this is an

important area for future research, present experience is not sufficient to

specify minimal rates for compiler speed in processing library units named in

context changes and generic instantiations. For example, compilation units

having many WITH statements may be testing the efficiency of the Ada library

manager instead of the compiler itself.

11

2.3 Definition of Time Used. All speed requirements of

this section shall be measured in terms of elapsed

(wall-clock) time.

Rationale

The timing interval must be precisely defined. Two commonly used times are

CPU execution time and actual elapsed (wall-clock) time. Elapsed time more

accurately reflects the user's perception of compilation speed since it

accounts for system overhead such as paging in a virtual environment. For

multi-user host operating systems, it is necessary to perform the compilation

speed testing in stand-alone mode with no other users on the system.

2.4 Host System Performance Requirements.

Compiler host system performance criteria are concerned with the

requirements for host computer memory in executing the compiler and the

compiler execution speed. No requirements on the amount of memory occupied by

the compiler are given, since fast compilation speed and the production of

efficient object code are of higher priority than conserving host memory, a

decreasingly precious resource due to the use of virtual memory techniques and

the decreasing cost per bit for memory chips.

2.4.1 (N) The compiler shall compile a syntactically and

semantically correct Ada program of at least 200

Ada source statements at a rate of at least 200

statements per minute (elapsed time), for each

1 MIPS of rated processing speed of the specified

host computer, while meeting the object code

requirements in 2.5.1 and 2.5.2.

Rationale

This requirement essentially says that if the optimization necessary to meet

the object code performance requirements in 2.5.1 and 2.5.2 is user

selectable, the compilation speed requirement is relaxed when optimization is

engaged (see the next paragraph).

12

2.4.2 (M) The compiler shall compile a syntactically and

semantically correct Ada program of at least 200

Ada source statements at a rate of at least 500

statements per minute (elapsed time), for each

I NIPS of rated processing speed of the specified

host computer, in the absence of requirements on

object code efficiency.

Rationale

It is often desirable to have fast compilation times during development, which

speeds initial coding and debugging, while slower compilation times are

acceptable for final performance tuning and testing. This requirement

specifies the basic compilation rate that the compiler must meet. If

optimization is user selectable, this requirement can be met with optimization

turned off since it does not specify the efficiency of the object code

produced. However, as with the previous requirement, it does require the

object code to be generated correctly.

2.4.3 The compiler shall compile a syntactically and

semantically correct Ada program of at least 200

Ada source statements at a rate of at least 1000

statements per minute (elapsed time), for each

1 MIPS of rated processing speed of the specified

host computer, with no requirement to generate object

code.

Rationale

Many times during early program development it is necessary to do many

compilations to find all the language errors before the object code is

generated. This requirement says the compiler should perform syntax (and

possibly semantic) checking at least twice as fast as when also generating

object code.

2.5 Target System Performance Requirements.

The requirements of this section are intended to ensure that Ada

compilers produce code that is as memory efficient and as fast as code

13

produced by compilers for older high order languages. If Ada is to be widely

used in embedded military systems, Ada compilers must be able to produce

object code comparable in quality to compilers of existing high order

languages, such as FORTRAN and JOVIAL J73. These requirements may not be

directly applicable to compilers for some target computers that have a

high-level "Ada code" type of instruction set architecture (e.g., the Rational

R1000). But since such computers are not in widespread use, and since most

computers used for military applications have conventional instruction sets,

these requirements will apply to most compilers.

2.5.1 (K) The compiler shall produce an object code program

that requires no more than 30% additional target

computer memory space over an equivalent program

written in assembly language.

2.5.2 (H) The compiler shall produce an object code program

that requires no more than 15% additional execution

time over an equivalent program written in assembly

language.

Rationale

The efficiency of the code produced by a compiler is determined by the amount

of target computer memory usage (object code size) and its execution speed.

The standard for efficiency to which most compilers have been compared is

hand-coded assembly language routines that implement the same algorithm as the

higher-level language construct translated by the compiler. An equivalent

assembly program is one that performs the same run-time checks (range checks,

dereference checks, etc.) and uses the same run-time conventions as the Ada

program. The equivalent assembly program should be straightforward and not

2resort to special tricks or tuning techniques such as changing an O(N)
algorithm to O(NlnN). Using an unvalidated Ada subset compiler for the Zilog

8000, McDonnell Aircraft Co. demonstrated a 1.6 memory expansion and 1.1 time

expansion of Ada programs over equivalent hand-coded assembly programs used

for the digital flight control system for the F-15 fighter aircraft.

14

SECTION 3

COMPILER CAPACITY REQUIREMENTS

Another important aspect of compiler performance is the capacity of

the compiler to accept various sizes and ranges of Ada constructs in the Ada

source program being compiled. The greater the capacity of the compiler, the

less the programmer will be restricted in his use of the language. Although

compilers hosted on or targeted to smaller computers (i.e., 16K-64K RAM) may

not be able to achieve many of these requirements, the intent is that if a

computer provides enough memory, the compiler should place a minimum of

restrictions on the programmer.

Although a compiler's actual capacity limits may be larger than those

specified here, the minimum values given represent our best judgment based

upon experience with military embedded systems and upon three other sources:

statistical data on existing Ada compilers, the consensus from a survey of Ada

implementors and users, and comments from reviewers in the Ada community of an

initial draft of this report.

3.1 Program Limitations. The compiler shall provide the following

minimum capacities for each of the Ada program elements listed when

provided with sufficient virtual storage:

library units in a program library 2048

compilation units in a program 1024

Ada source statements in a program 2,500,000

maximum size (in words) of a program 2,500,000

ELABORATE pragmas 512

width of source line (& length of identifier) 120

Rationale

The definition of Ada source statements given in Section 1.1 is used here.

The width of an Ada source line is a compromise, since many terminals and

punched cards limit source lines to 80 characters but most printers will

display 133 characters. It is difficult to properly indent a program with

fewer than 120 characters in a source line. The maximum program size is given

in terms of the number of words of memory as defined for the target computer.

15

3.2 Compilation Unit Limitations. The compiler shall provide the

following minimum capacities for each of the compilation unit

elements listed when provided with sufficient virtual storage:

library units in a single context clause 16

library units WITHed by a compilation unit 256

external names 4096

Ads source statements in a compilation unit 4096

identifiers (including those in WITHed units) 4096

declarations (total) in a compilation unit 4096

type declarations 1024

subtype declarations of a single type 1024

literals in a compilation unit 1024

Rationale

With Ada's separate compilation feature, the need for very large compilation

units is gone, and the need to support compilation units in excess of 4096 Ada

source statements is questionable. The number of declarations allowed in a

compilation should equal the number of identifiers allowed. A useful limit on

these is the number of Ada source statements, allowing every source line to

contain one declaration.

3.3 Program Unit Limitations. The compiler shall provide the following

minimum capacities for each of the program unit (subprogram, package,

task, or generic unit body) elements listed when provided with

sufficient virtual storage:

depth of nesting of program units 64

depth of nesting of blocks 64

depth of nesting of case statements 64

depth of nesting of loop statements 64

depth of nesting of if statements 256

elseif alternatives 256

exception declarations in a frame 256

exception handlers in a frame 256

declarations in a declarative part 1024

identifiers in a declarative part 1024

frames an exception can propagate through unlimited

16

I im~m~m~ miai a~m~~ilream|F , Ml

Rationale

The depth of nesting of program units refers to the number of program units

that may be declared within each other, not the total number of units that may

be declared within a unit at the same level. An exception may be propagated

through as many levels as necessary to reach the top of the calling chain.

Any smaller number effectively limits the number of subprogram calls in a

chain (including recursive calls). For example, if an infinite recursion

causes a stack overflow, the resultant STORAGE-ERROR exception should be

propagated to the outermost calling unit to allow recovery.

3.4 Task Limitations. The compiler shall provide the following minimum

capacities for each of the task elements listed when provided with

sufficient virtual storage:

values in subtype SYSTEM.PRIORITY 16

simultaneously active tasks in a program 512

accept statements in a task 64

entry declarations in a task 64

formal parameters in an entry declaration 64

formal parameters in an accept statement 64

delay statements in a task 64

alternatives in a select statement 64

Rationale

Although many tasks running at the same time might seriously impact

performance, the number of active tasks allowed does not determine how many

tasks can actually be running simultaneously, since tasks could be blocked

awaiting rendezvous.

3.5 Subprogram Limitations. The compiler shall provide the following

minimum capacities for each of the subprogram elements listed when

provided with sufficient virtual storage:

formal parameters 64

levels in a call chain unlimited

17

nun ~nnJJ~j~lllgllllllllr llllllll ,, . .. , ,:: U

3.6 Package Limitations. The compiler shall provide the following

minimum capacities for each of the package elements listed when

provided with sufficient virtual storage:

visible declarations 1024

private declarations 1024

3.7 Statement Limitations. The compiler shall provide the following

minimum capacities for each of the statement elements listed when

provided with sufficient virtual storage:

declarations in a block 1024

enumeration literals in a single type 512

dimensions in an array 32

total elements in an array 65535

components in a record type 256

discriminants in a record type 64

variant parts in a record type 64

size of any object in bits 65535

characters in a value of type STRING 65535

Rationale

Although the predefined type STRING is declared in package STANDARD to be an

array of characters with an index of type POSITIVE, which is a subtype of

INTEGER from 1 to INTEGER'LAST, the ARM does not specify how the predefined

type INTEGER is implemented (thus determining the value of INTEGER'LAST) or

how many elements an array can have (thus, limiting the maximum number of

characters in a value of type STRING).

3.8 Expression Limitations. The compiler shall provide the following

minimum capacities for each of the expression elements listed when

provided with sufficient virtual storage:

operators in an expression 128

function calls in an expression 128

primaries in an expression 128

depth of parentheses nesting 64

Rationale

Primaries are defined in ARM 4.4 and are essentially the elements, such as

literals and variables, that are combined with operators to make up

expressions.
18

SECTION 4

USER INTERFACE REQUIREMENTS

This section addresses the means by which the compiler elicits

information from and returns information to the user. The requirements here

attempt to define what is meant by a compiler that is "user-friendly."

4.1 User Inputs.

4.1.1 The compiler shall be invokable from either a

batch file command or an interactive command.

Rationale

For compilers that run on interactive host computers, this facility saves

setup time and simplifies maintaining special command files for each mode of

invoking the compiler.

4.1.2 The compiler shall be sharable (re-entrant) by

multiple users, if the host operating system

supports multiple users.

Rationale

It is possible, but unlikely, that a vendor would build a compiler which runs

under a multi-process, multi-user host operating system but which can only be

accessed by one user at a time.

4.1.3 The compiler shall implement options to perform

the same function as pragmas SUPPRESS and OPTIMIZE.

Rationale

Command level options that perform the same function as the SUPPRESS and

OPTIMIZE pragmas ease program development and testing since the source code

does not have to be altered to insert and later remove these pragmas.

4.1.4 The compiler shall implement an option to recover

from non-fatal errors as defined in 4.3.3. The recovery

action taken shall be identified.

19

Rationale

The user should have the option to allow compilation to continue in the

presence of non-fatal errors. For example, a compiler can usually tell if a

semicolon is missing, which is not a fatal error. In this case, recovery

should be attempted and compilation should continue. On the other hand, if a

package specification named in a WITH clause cannot be found, this is a fatal

error and compilation should be terminated. Meaningful messages identifying

the action taken are necessary.

4.1.5 The compiler shall implement an option to disable

the generation of diagnostic messages of a specified

severity level.

Rationale

The user should have the flexibility to turn off output of certain levels of

diagnostic messages when there is an awareness of the condition or a desire to

focus on other compilation outputs. For some implementations, this option can

provide an increase in compilation speed when enabled.

4.1.6 The compiler shall implement an option to select

or suspend the generation of object code and/or

assembly code.

Rationale

This requirement provides the user with the capability to perform syntax (and

possibly semantic) checking, which most compilers can do quite rapidly, during

the early stages of development without the time-consuming task of object code

production.

4.2 Compiler Listings.

4.2.1 The compiler shall be able to produce at the option

of the user a compilation listing showing the source

code with line numbers.

20

4.2.2 The compiler shall be able to produce at the option

of the user a list of diagnostic messages either at

the position in the source code where the condition

occurred, and/or at the end of the compilation listing,

even if the compilation terminates abnormally.

Rationale

Listings that have embedded diagnostic messages, rather than an error message

summary at the end of the listing, ease the task of debugging. As this is

sometimes a matter of programmer preference, a good compiler should give the

user the option of embedded or last page diagnostic messages, or both.

4.2.3 The compiler shall be able to produce at the option

of the user an assembly or pseudo-assembly output

listing.

4.2.4 The compiler shall be able to produce at the option

of the user an assembly or pseudo-assembly output

listing with embedded Ada source statements adjacent

to the assembly code they generated.

Rationale

Assembly or pseudo-assembly code listings are invaluable in evaluating

compiler errors and areas of inefficient code production. An assembly listing

with embedded Ada code is essential in developing applications for embedded

target computers, where testing, debugging, and maintaining code must be done

at the assembly language or machine language level. For highly optimizing or

interpretive compilers this may not always be possible.

4.2.5 The compiler shall be able to produce at the option

of the user a cross reference (set/use) listing.

4.2.6 The compiler shall be able to produce at the option

of the user a map of relative addresses of variables and

constants.

21

Rationale

These listings are used for debugging and testing and have traditionally been

included in compilation listings. They are invaluable for developing and

testing software for embedded systems.

4.2.7 For each compilation, the compiler shall be able to

produce at the option of the user a statistics summary

listing with the following information:

a. Number of statements

b. Number of source lines

c. Compile time per program module (CPU time)

d. Total compile time (CPU and elapsed time)

e. Total number of instructions generated

f. Total number of data words generated

g. Total size of object module generated

Rationale

This information is useful for determining compiler performance and for

project management information. Some of this information could be supplied by

external tools, but all of it is available at compile time.

4.2.8 All listings shall include the following header information on

every page:

a. Date and time of compilation

b. Compilation unit name

c. Type of listing

d. Page number within total listing

e. User identification

Rationale

Header summary information is necessary to easily identify listings.

4.2.9 All listings shall have the following additional information

within the listing:

a. Compiler name, version number, release date

b. Host and target computer configurations

c. Specified and default control options

22

-m•Mill'

d. Source file name

e. Object file name

Rationale

This information is necessary but need not be included on every page. It can

be on the first page or included with the compilation summary at the end of

the listing.

4.3 Diagnostic Messages.

4.3.1 Each diagnostic message shall contain the message

text, a reference number for additional information

in the compiler documentation, and a severity level.

4.3.2 The diagnostic message text shall be sufficiently

informative to enable the user to analyze the problem

without consulting compiler documentation.

4.3.3 The severity levels of diagnostic messages shall

include the following error classes:

a. Note: Information to the user; the

compilation process continues and the

object program is not affected.

b. Warning: Information about the

validity of the program. The source

program is well-defined and semantically

correct; the object program may not

behave as intended.

c. Error: An illegal syntactic or

semantic construct with a well-defined

recovery action. Compilation continues

and the object program contains code

for the illegal construct; the object

program may behave meaninglessly at run-time.

23

d. Serious Error: Illegal construct with no

well-defined recovery action. Syntax

analysis continues but no object program

is generated.

e. Fatal Error: Illegal construct with no

reasonable syntactic recovery action.

Compilation terminates and no outputs

other than the source listing and diagnostic

messages are produced.

Rationale

The method of presentation of diagnostic messages is an essential part of the

user interface. Messages should be classed by their level of severity, e.g.

fatal, serious, recoverable, warning, or note. The names of the classes used

here are suggestive; it is not required that the same names or diagnostic

codes be used. It is necessary that the compiler recognize and diagnose these

classes of messages.

4.3.4 The compiler shall issue a diagnostic message

to indicate any capacity requirements that have

been exceeded.

Rationale

The compiler shall indicate whenever any of the capacity requirements of

section 3 have been exceeded.

4.3.5 The compiler shall not abort regardless of

the type or number of errors encountered.

Rationale

Even if the compiler encounters an overwhelming number of errors, it should

quit gracefully and produce a listing of the errors encountered at the point

where it could no longer continue. A compiler that simply aborts when it

cannot compile a program with too many or certain types of errors is extremely

frustrating to use, since no listings are produced.

24

SECTION 5

EXTERNAL TOOLS INTERFACE REQUIREMENTS

This section concerns the compiler's ability to interface with tools

that may be external to the compiler but are generally considered necessary in

a complete programming support environment. Although specifying the exact

functionality of these tools is outside the scope of this document, it is

necessary that a production quality compiler have the proper interfaces to

work with the tools specified here. These interfaces can be either

proprietary, working only with tools developed by the compiler vendor, or they

can be open and work with a number of tools. The list here is minimal and

expected to grow over time.

5.1 Listing Tools.

5.1.1 The compiler and/or external tool shall be able to

produce a source listing with indentations to show

control constructs.

Rationale

Indented source listings, sometimes called "pretty-printed" listings, are

considered by many users to be useful in understanding the flow of control of

a program. This capability permits any user to obtain an indented source

listing without relying on the programmer to indent his own code as the

program is developed.

5.1.2 The compiler, linker/loader, and/or external tool

shall be able to produce an absolute assembly code

listing.

Rationale

An absolute assembly listing shows the absolute memory location in the target

computer of each machine/assembly instruction. Depending on the application

(e.g., embedded avionics and spaceborne applications involving formal IV&V),

an absolute assembly listing can be essential. This listing may be produced

by the compiler or by special tools that interface with the compiler and

linker/loader.

25

5.1.3 The compiler and/or library manager shall be able

to produce at the option of the user a dependency listing

showing which library units are WITHed by other units.

Rationale

This listing is useful when modifying or debugging a large program. It allows

tracing units that reference a particular library unit so that modifications

can be made in the user program units. This listing can be produced by the

compiler, the library manager, or by a separate programming environment tool.

5.1.4 The compiler and/or library manager shall have the

capability of listing all out-of-date (obsolete)

library units with the option of selectively

recompiling such units before linking.

Rationale

Ada's separate compilation mechanism requires a special Ada library manager

function with its own particular production quality requirements. Compilation

units which depend upon a particular program unit that has been changed and

recompiled also need to be recompiled before linking and execution. With

large program units, controlling these dependencies and recompilations by hand

is unreasonably time-consuming.

5.2 Linker/Loader.

5.2.1 The compiler and/or linker/loader shall include

in the load module only those subprograms that

are actually referenced by the object program.

Rationale

A program unit that WITHs a package in order to access several subprograms

should not have to pay the penalty of having every subprogram in the package

included by the linker in the load module; only the code for subprograms

actually referenced should be included. This feature is necessary in the case

of a very large library package, such as a vendor supplied math package, in

order to reduce the size of the load module.

26

5.2.2 The compiler and/or linker/loader shall include

in the load module only those run-time system

modules that are referenced by the object program.

Rationale

The run-time system is linked with the object code to produce the load

module. Only the parts of the run-time system actually referenced should be

included in the load module. Otherwise the load module size is increased

unnecessarily, which may be unacceptable for some embedded systems. For

example, an application that does not use tasks should not incur the space

penalty of the added run-time code that handles tasking.

5.2.3 The compiler and/or linker/loader shall support

the partial linking of object modules as specified

by the user.

Rationale

The user should have the option of selecting which external names will remain

external in the partially linked sets. A partially linked object module must

then be acceptable as input for subsequent linking.

5.2.4 The compiler and/or linker/loader shall support the

linking of designated object modules without including

them in the load module.

Rationale

This requirement allows linkage to a "phantom" load module which can be

separately down-loaded into known absolute locations. In this way linkage to

shared resident code, which could be located in RON, is allowed.

5.3 Symbolic Debusger. The compiler shall be able to

produce object code files and other types of data necessary

to debug those files with an available source-level

(symbolic) debugger.

Rationale

It is desirable that a production quality compiler system provide a symbolic

debugger capability. Therefore, the compiler should provide for the necessary

27

interfaces to work with a symbolic debugger available on the same host

computer as the compiler. An example of this interface is the saving of the

symbol table and intermediate language information.

28

SECTION 6

ADA LANGUAGE REQUIREMENTS

Although conformance to the Ada standard (ANSI/MIL-STD-1815A)[ARM83]

is the foremost functional requirement of the compiler, the ARM intentionally

leaves the interpretation of many language features to the compiler

implementor. These areas of variability are generally limited to pragmas,

attributes, certain machine-dependent conventions, and certain allowed

restrictions on representation clauses. This section specifies the preferred

implementation of these language features.

6.1 General. The compiler shall eliminate statements or subprograms

that will never be executed (dead code) because their execution

depends on a condition known to be false at compilation time.

Rationale

The ARM permits a compiler to eliminate code that it can determine will never

be executed in order to provide a conditional compilation facility within the

language. By use of this feature, sections of the code will be eliminated if

some static expression whose value is known at compile time (ARM 4.9) is set

to a certain value (e.g., "DEBUGGING : CONSTANT BOOLEAN:=FALSE"). Thus, the

programmer can leave diagnostic code (e.g., text I/0 statements used for

monitoring errors during development) in the program without incurring a size

penalty in the production version of the object code.

6.2 Character Sets.

6.2.1 The compiler shall allow the Ada program text to contain any of

the 95 graphic characters and 5 form effectors of the ISO 7-bit

character set (ISO Standard 646) to the extent supported by the

host computer.

Rationale

The ARM (section 2.1) only requires a compiler to recognize a set of 56 basic

graphic characters, since some older computers cannot support the full 95

character set. A production quality compiler should also allow the 26 lower

case letters and 13 other special characters.

29

II .A pf e

6.2.2 The predefined packages TEXT_IO, DIRECTIO,

and SEQUENTIAL_IO shall support input and

output of data containing any of the 128 ASCII

character literals of the predefined type

STANDARD. CHARACTER.

6.2.3 The compiler shall allow comments and values of

the predefined type STRING to contain any of the

128 ASCII characters contained in the predefined type

STANDARD. CHARACTER.

Rationale

These requirements allow writing programs that generate special escape codes

and control characters used to drive external devices (e.g., a graphics

terminal).

6.3 Data Representation.

6.3.1 The compiler shall provide predefined types in

package STANDARD for all the integer and

floating point types provided by the target

computer.

Rationale

The compiler should provide access to the full capability of the data types

implemented by the target computer instruction set architecture. For example,

the predefined integer types provided by a computer might vary from 8 bits to

64 bits or longer, and predefined floating point types could vary from 32 bits

to 128 bits. Accordingly, the compiler should contain corresponding

predefined types in package STANDARD, e.g., SHORTINTEGER or LONGFLOAT.

6.3.2 The compiler shall support universal integer

calculations requiring up to 64 bits of accuracy.

Rationale

The ACVC has four tests that check whether or not a compiler can perform

calculations on universal integers requiring an accuracy of 32 and 64 bits,

i.e., on values that exceed SYSTEM.MAXINT. Many compilers have passed the

test for accuracy of 64 bits.

30

6.3.3 The components of array types with BOOLEAN components

named in a pragma PACK shall be stored in contiguous

memory bits, i.e., each component shall occupy only one

bit of storage.

Rationale

Using instructions for shifting data, it is possible to pack any array or

record so its components are stored at the next available bit location (i.e.

aiigned on bit boundaries instead of on byte or word boundaries).

6.3.4 The compiler shall support address clauses.

Rationale

Address clauses are desirable for small embedded computer applications for

handling memory-mapped I/O (i.e., using a memory address to specify I/O ports

or registers of devices), connecting to hardware interrupts, communicating

with non-Ada routines, storing objects into particular types of memory (e.g.,

EPROM), and accessing specific locations to perform hardware checks. Address

clauses may be impossible to support under virtual memory operating systems.

6.3.5 The compiler shall support length clauses,

enumeration representation clauses, and record

representation clauses.

Rationale

These clauses (ARM, Chapter 13) are needed to control the physical

implementation of data where memory conservation is at a premium or where

machine interfaces require a specific layout, e.g., I/0 devices and telemetry

words.

6.3.6 The range of integer code values allowed in an

enumeration representation clause shall be

MIN-TNT to MAX INT.

Rationale

This requirement allows a programmer to take advantage of the full range of

integer values provided by the target computer to specify the hardware mapping

of enumeration types. This is often necessary for systems programs that must

interface with device drivers and other machine-dependent values.

31

6.3.7 The compiler shall allow non-contiguous integer

code values in an enumeration representation clause.

Rationale

In system programing, it is convenient to use enumeration literals for

unique codes that must be passed to existing operating system routines and

external interfaces. This requirement is tested by the ACVC tests and has

been met by many Ad& compilers.

6.3.8 The compiler shall support the SIZE attribute

designator for enumeration types named in a length

clause.

Rationale

Th. size attribute in a length clause allows a programmer to specify an upper

limit on the number of bits to be allocated to ob-jects of a designated

enumeration type. For example, a BOOLEAN object can be represented using 1

bit, but for accessing efficiency an implementation might use an 8-bit byte

representation. If space is a high priority, a programmer may force the

compiler to use just I bit by using a length clause. (Since hardware defined

integer types are likely to have faster built-in accessing and arithmetic

instructions, this would probably result in slower program execution.)

6.3.9 The compiler shall support the SMALL attribute

designator for fixed point types.

Rationale

The attribute SMALL is necessary to control the amount of storage allocated to

fixed point types in order to improve storage efficiency or interface

correctly with an external hardware device.

6.3.10 Memory space for the creation of objects designated

by an access type shall not be allocated until allocators

(new statements) for that type are executed.

Rationale

Not allocating blocks of memory for creating pools of access objects until

they are needed minimizes object code size.

32

6.4 Subprograms.

6.4.1 The .ompiler shall expand inline any subprogram

or generic subprogram instantiation that is named

in a pragma INLINE and that meets the criteria of 6.4.2.

6.4.2 A subprogram or generic subprogram instantiation

is a candidate for inline expansion if it meets

the following criteria:

a. Its body is declared in either the

current unit or the compilation library.

b. Its parameters or result type (for

functions) are not task types,

composite types with task type components,

unconstrained array types, or unconstrained

types with discriminants.

c. It does not contain another subprogram

body, package body, body stub, generic

declaration, generic instantiation,

exception declaration, or access

type declaration.

d. It does not contain declarations

that imply the creation of

dependent tasks.

e. It does not contain any subprogram

calls that result in direct or

indirect recursion.

6.4.3 The compiler shall expand inline any subprogram that

meets the requirements in 6.4.2 and that is called

only once.

Rationale

Inline expansion is an important feature to improve execution speed at the

expense of increased object code size. Inline expansion of certain small

subprograms or those called only once can save considerable time during

33

run-time execution with little or no increase in memory over the usual

prologue and epilogue generated for a normal call.

6.4.4 The compiler shall provide the capability for main

subprograms to return a value to the target computer

run-time system indicating the completion status of

the program.

Rationale

This capability can be accomplished by allowing library units that are

parameterless functions as well as procedure subprograms to be main programs.

This capability simplifies the implementation of run-time executives for

embedded systems.

6.5 Tasking.

6.5.1 The compiler shall provide a capability for handling

target computer hardware or operating system interrupts

as calls to Ada task entries.

Rationale

This capability might be provided by allowing the use of an address clause for

associating a task entry with a hardware interrupt (ARM 13.5.1), or by

providing pragmas to cause task entries to be associated with target operating

system or computer hardware interrupts.

6.5.2 The execution-time overhead to perform a context switch

or to terminate or abort a task shall be no more than

that required to call or return from a subprogram.

Rationale

Once a task is established, the overhead to switch tasks should be equivalent

to the time required to make a subprogram call.

6.5.3 The ordering of select alternatives in a selective

wait statement shall not impact the execution speed

of the program.

34

Rationale

Select alternatives include accept statements, delay statements, and terminate

statements. The ARM does not define the mechanism for selecting one of

several open alternatives when a rendezvous with any of them is possible. The

intent of this requirement is that the mechanism chosen by the compiler's

run-time system is fair (e.g., the first alternative is not always selected).

This requirement can be tested simply by reordering the select alternatives of

a typical program, recompiling it, and timing its execution.

6.5.4 The compiler shall dispatch the execution of ready

tasks in a manner that will give each task an equal

share of the processing resources consistent with

any PRIORITY pragmas.

Rationale

The ARM does not prescribe a particular dispatching policy. The policy chosen

by the implementor should be fair and not cause task starvation. For example,

an easy but potentially unfair dispatching policy is to allow tasks to run

until blocked. With this approach, a task containing a loop with a large

number of iterations could run indefinitely while others would remain blocked.

6.5.5 Tasks that are blocked, completed, terminated, or

not activated shall not impact the performance of

the active tasks.

Rationale

A task is blocked if it is waiting for a rendezvous. Tasks are completed when

they have reached the end of their executable statements. A task can become

blocked while waiting for termination of dependent tasks. Idle tasks such as

these should not consume processing resources until they become active.

6.5.6 The value of DURATION'DELTA shall not be greater

than 1 millisecond.

Rationale

DURATION'DELTA is the smallest decimal increment of time (in seconds) that the

compiler can support in a delay statement. The ARM requires DURATION'DELTA to

be less than 20 milliseconds and recommends less than 50 microseconds.

35

Representation of 20 milliseconds (.020 decimal) requires 6 bits to the right

of the binary point to represent, while 1 millisecond requires 10 bits. The

ARM also requires that DURATION'LARGE be at least 86400 (the number of seconds

in 1 day), which requires 17 bits to the left of the binary point. Together

these requirements require an implementation to support fixed point types with

a representation of at least 24 bits (6+l7+sign bit) for DURATION'DELTA of 20

milliseconds and 28 bits for a DURATION'DELTA of 1 millisecond.

6.6 Exceptions.

6.6.1 An exception shall not impact execution speed until

it is raised.

Rationale

Exceptions should be part of the termination actions of the frame they reside

in rather than part of normal execution. It is important that exceptions

which are not used do not slow execution of the program.

6.6.2 The compiler shall provide the pragma SUPPRESS or

an equivalent capability to permit suppression of

all predefined run-time checks in a designated

compilation unit.

Rationale

To increase execution speed of the delivered program it may be necessary to

turn off Ada's extensive run-time checking mechanism. The granularity at

which execution of run-time checking can be disabled should be minimally at

the compilation unit level (e.g., allow all checking to be disabled for all

entities within a compilation unit). Pragma SUPPRESS provides a finer degree

of granularity by allowing specific checks on specific entities to be disabled

over any declarative region. A vendor may choose to implement pragma SUPPRESS

or use another mechanism to achieve this capability.

6.6.3 The compiler shall issue a warning message to

indicate static expressions that will always raise

a constraint exception at run-time.

36

Rationale

The ARM does not require a compiler to detect that a particular construct will

always raise a run-time exception. Static expressions (which are necessarily

determinable at compile time) that always raise a constraint exception can be

flagged at compile time. The programmer should not have to wait until

run-time to learn about a constraint error.

6.7 Generics.

6.7.1 The compiler shall share code between multiple

instantiations of generic units that do not differ

in their underlying machine representation.

Rationale

When a generic subprogram is instantiated with different types which have

identical machine representations, the compiler should recognize that the code

produced by these various instantiations is identical and therefore make all

references to a single copy of the generic unit, thereby minimizing the

program memory usage.

6.7.2 The compiler shall allow generic specifications

and bodies to be compiled in completely separate

compilations.

6.7.3 The compiler shall allow subunits of a generic

unit to be separately compiled.

Rationale

These requirements simply require that Ada's separate compilation semantics

apply to generic units as well as subprograms and packages. The ACVC tests

for these conditions.

37

6.8 Interface with Other Languages.

6.8.1 The compiler shall provide the pragma INTERFACE

to allow importing of assembly language programs

already assembled into the object code format of

the target computer. The machine language interface

for procedure and function parameters and function

result types shall be documented.

Rationale

It is frequently necessary in embedded systems to implement many actions in

machine language to meet timing and sizing requirements. The ARM suggests two

mechanisms for doing this. One is to supply a predefined package called

MACHINECODE for each target machine, which allows a programmer to make

machine code insertions. The other is to provide the pragma INTERFACE for

importing procedures and functions of the target machine assembly language.

The latter is regarded by many as the safest way to interface assembly/machine

language subprograms with Ada code. The exact nature of the Ada/machine

language interface shall be documented in the User's Manual or Run-time System

Manual (see 8.3 and 8.4)

6.8.2 The compiler shall provide the pragma INTERFACE,

or an equivalent mechanism, to allow incorporation

of subprogram bodies compiled from the standard

system or application languages of the target

computer.

Rationale

The programming languages that need to be interfaced with by use of pragma

INTERFACE will vary with the target computer. For UNIX systems, the ability

to interface with C programs is required; for many systems it is FORTRAN; for

1750A compilers it is JOVIAL. Reuse of the extensive body of well-tested code

for mission critical applications written in FORTRAN and JOVIAL J73

(especially for Air Force projects) within newly developed Ada programs will

be necessary to achieve a cost effective transition to Ada for existing DOD

projects.

38

6.9 Unchecked Programming. The generic library subprograms

UNCHECKEDDEALLOCATION and UNCHECKEDCONVERSION shall be

implemented with no restrictions except that both objects

in an unchecked conversion may be required to be of the

same size.

Rationale

The ARM permits an implementation to place restrictions on unchecked

conversions. Minimally such restrictions should be limited to requiring both

to be of the same size (i.e., same number of bits). For types of different

sizes, one approach is to truncate the high-order bits if the source type is

larger than the target, and extend it with zero bits if it is smaller than the

size of the target type.

6.10 Input/Output.

6.10.1 An implementation shall provide packages to allow

input and output of FORTRAN-formatted text files

for each target computer that supports text

input/output.

Rationale

Many programmers regard format-directed input/output facilities (as provided

by FORTRAN) as necessary for many data processing applications. This

requirement is in addition to the TEXT_10 package required by the ARM.

Compilers that only generate code for embedded computers with no text

input/output capability need not provide this capability.

6.10.2 Package SEQUENTIAL_IO and package DIRECTIO shall be

able to be instantiated with unconstrained array types

or with unconstrained record types which have discriminants

without default values.

Rationale

In processing files with variable-sized records or arrays it is convenient to

open them with a single unconstrained type, read in the value, and then test

its size to determine how to process it. The ACVC tests this requirement.

39

6.10.3 The compiler shall allow more than one internal file

to be associated with each external file for DIRECTIO

and SEQUENTIALIO for both reading and writing.

6.10.4 The compiler shall allow an external file associated

with more than one internal file to be deleted.

Rationale

In writing generalized file processing programs it is convenient to be able to

refer to the same file using different file names and to be able to delete

such a file. The ACVC checks these requirements, which have been met by many

compilers.

6.11 System Information.

6.11.1 The named numbers defined in package SYSTEM shall

not limit or restrict the inherent capabilities of

the target computer hardware or operating system.

Rationale

The value of STORAGEUNIT should not be less than the number of bits in the

smallest addressable storage unit, and the value of MEMORYSIZE should not be

less than the maximum number of addressable memory units. MININT (MAX INT)

should be equal to the most negative (most positive) value of all the

predefined integer types provided by the target computer hardware. MAXDIGITS

should not be less than the largest number of significant decimal digits in

the mantissa of the largest floating point type provided by the target

computer. MAXMANTISSA should not be less than the largest number of binary

digits of the mantissa of any fixed point hardware type, or equal to the

maximum number of bits (not counting sign) of the largest integer type if

fixed point is handled via integer representation. TICK should be equal to

the smallest timing increment provided by the target computer hardware or

executive services, if any.

6.11.2 The enumeration type NAME defined in Package SYSTEM

shall have values for all target computers for which

the compiler generates code.

40

ga W&MW

Rationale

The constant SYSTEMNAME in package SYSTEM takes on values of type NAME and

can be used to write portable Ada code that can be tailored to a particular

target computer depending on the value of SYSTEM-NAME, which can be set via

the pragma SYSTEMNAME.

6.12 Pragmas. An implementation shall provide the predefined

pragmas CONTROLLED, ELABORATE, LIST, MEMORYSIZE,

OPTIMIZE, PAGE, STORAGEUNIT, and SYSTEMNAME.

Rationale

The listed pragmas can be implemented by most computer systems and should be

implemented as defined in the ARM.

41

SECTION 7

QUALITY ASSURANCE AND RELIABILITY REQUIREMENTS

This section defines requirements for testing, configuration

management, and maintenance of a compiler. These requirements are intended to

assure that a compiler performs reliably.

7.1 (M) Validation. The compiler shall be validated by an Ada

Validation Facility established and operated under the

direction of the DOD Ada Joint Program Office in all

configurations necessary to meet the requirements of

this document.

Rationale

To be validated an Ada compiler must successfully pass the current version of

the Ada Compiler Validation Capability test suite. Policies and procedures of

the validation process are still undergoing change. The prospective compiler

buyer should inquire as to the status of the policies and procedures for

validation at the time of procuring an Ada compiler. The compiler should be

validated with certain optional features, such as optimization, both on and

off.

7.2 (M) Field Testing. The compiler shall be subjected

to a minimum of 20 site-months of independent

evaluation and usage in a realistic production

work environment before release for production use.

Rationale

Field testing by production oriented users is necessary to find errors not

discovered through validation and vendor testing. The measure selected for

field testing is site-months (number of user organization sites times the

number of months of testing). For example, 10 sites for 2 months, or 5 sites

for 4 months is 20 site-months. To achieve the 20 site-month requirement, at

least 3 sites should be used (with 7 months), or at least 2 months at 10

sites. A period of 20 site-months was felt to be an acceptable minimum based

upon experience with existing Ada compilers.

43

7.3 Maintenance. Provisions for on-going problem

correction of the compiler shall be provided.

Rationale

On-going problem correction is necessary for any complex software product;

ideally, a production quality compiler should require little of this. The

procuring users' agency should require some form of maintenance contract from

the compiler vendor. If adequate maintenance capabilities cannot be provided,

then the source code, development tools, maintenance documentation, data

rights, and a set of regression test cases must be obtained by the procuring

users' agency, e.g., the program office.

7.4 Configuration Management. The maintaining organization

shall provide configuration management for the compiler,

including maintenance of an up-to-date data base of compiler

errors showing the nature and status of each error.

Rationale

Configuration management of changes to the compiler is important. The vendor

or the users' agency responsible for compiler maintenance (e.g., the

Government in the case of GFE compilers) must provide the necessary

configuration management.

7.5 (M) Error Rate. The production quality compiler

should exhibit an error rate of no more than 1

verified new error for each 250,000 new lines

of Ada compiled. This rate shall decrease over

time as the compiler matures.

Rationale

Industry experience with other mature HOL compilers indicates that an error

rate exceeding this level is inadequate for production work. Although this

requirement is difficult to verify and introduces other ambiguities (e.g.,

what constitutes an error), we felt that maturity and reliability are such

important characteristics in a production quality compiler that to refrain

from stating some minimal requirement would be unsatisfactory.

44

SECTION 8

DOCUMENTATION REQUIREMENTS

This section describes documents that should accompany a production

quality compiler. Except for the documentation that must be in a specific

format to meet DOD requirements, the documents in this section may be supplied

in any format agreed upon by the vendor and the compiler buyer. Specifically,

the documents may be combined in any appropriate manner, provided they contain

the specified information.

8.1 (M) Validation Summary Report. The vendor shall provide

a copy of the most recent version of the official

validation summary report prepared by the Ada Validation

Organization that validated the compiler. This report shall

include both CPU and elapsed times required to run the

ACVC tests.

Rationale

The Government (i.e., the Ada Joint Program Office and the Ada Validation

Organization and its facilities) is not required to make this report publicly

available. Therefore, the vendor must provide this report to the compiler

purchaser.

8.2 (H) Ada Languase Reference Manual (ARM). The compiler vendor

shall supply a copy of the Ada Language Reference Manual

(ARM) (ANSI/MIL-STD 1815A) that includes implementation-

specific details of the compiler where applicable.

Rationale

Programmers should have readily available information about how the compiler

implements parts of the Ada language which are implementation-defined in the

ARM. In particular, the ARM requires that the reference manual of each Ada

implementation include an appendix (Appendix F) describing all implementation-

dependent characteristics.

45

8.3 (M) User's Manual. The vendor shall provide a User's Manual

that describes how to use the compiler to develop Ada

applications programs, including information on how to

run the compiler. It shall include all system-dependent

forms implemented in the compiler (i.e., machine-specific

functions), methods of selecting debug aids, compiler

options and parameters, and a complete list of error

and warning messages provided by the compiler, with a

description of each. Message descriptions shall

reference the relevant section of the ARM. The

manual shall include examples of the commands used to

invoke the compiler and linker/loader system with various

combinations of compiler and linker options, respectively.

Rationale

The purpose of the User's Manual is to provide information to programmers on

how to use the compiler. It should contain all the information specific to

the compiler being procured.

8.4 (M) Run-time Syste Manual. The vendor shall provide a

Run-time System Manual for each target computer.

Rationale

The Run-time System Manual is necessary for the user who must understand how

the run-time system is organized. This manual shall describe the details of

the run-time system: each module, the function of each module, language

written in, called by, modules called, design details, and run-time

performance in terms of memory and execution speed.

8.5 (M) Version Description Document(VDD). The vendor

shall provide a Version Description Document

for each compiler configuration.

Rationale

The Version Description Document shall completely describe the host computer

hardware and the host computer operating system (if any) including vendor,

version, and configuration. The VDD shall also describe the format and type

of code generated (i.e., whether assembly or object code), the exact target

46

computers for which code is generated, including instruction set architecture

extensions/subsets, channels implemented, memory present, vendor of computer,

model number, peripherals and options, and the exact target computer operating

system (if any) including vendor, version, and configuration.

8.6 (M) Installation Manual. The vendor shall provide

a detailed Installation Manual and all the

necessary software materials for installing

each host configuration of the Ada compiler,

including several sample Ada programs with

correct output.

Rationale

This manual shall provide complete information on the process of installing

the compiler on the user's host computer system. This information should

include the file structure of the compiler, how the compiler is supplied, what

steps are necessary to install the compiler, and whether the user or the

vendor shall perform the installation. Necessary software materials include

prepared comnand files that instruct the host computer operating system to

automatically install the compiler, and sample programs to allow the installer

a means for verifying that the compiler has been properly installed. The

Installation Manual may be combined with the User's Manual described above.

The following requirements are only necessary when procuring a production

quality Ada Compiler developed under a DOD contract.

8.7 Maintenance Manual. The vendor shall provide a

Maintenance Manual which presents the methods to be

used in the general maintenance of all parts of the

compiler. All major data structures, such as the

symbol table and the intermediate language, shall

be fully described. All debugging aids that have

been inserted into the compiler shall be described

and their use fully stated. If the compiler has a

special "maintenance mode" of operation to assist

in pinpointing errors, this shall be fully described.

47

Rationale

The Maintenance Manual is essential if the customer procuring the compiler

intends to perform maintenance himself. The Maintenance fanual highlights the

detailed design and coding information usually contained in the Software

Product Specification. It should cover both code and data design.

8.8 (M) Software Product Specification. The vendor shall

provide a Software Product Specification for the

compiler in accordance with DOD-STD-2167 and Data

Item Description DI-MCCR-80029.

Rationale

This document does not apply to off-the-shelf compilers, but it is required

when the compiler is newly developed for a DOD contract. It contains design

documentation, upgraded completion of the information in the Software To2

Level Design Document and Software Detailed Design Document, and code listings

for each unit in the compiler.

48

REFERENCES

[APSE841] Evaluation and Validation Team, Requirements for Evaluation and

Validation of Ada Progr4nuning Support Environments, Version 1.0, (17

October 1984).

[D21671 Military Standard, Defense System Software Development, DOD-STD-2167

(4 June 1985).

[ARM83] Military Standard, Ada Language Reference Manual (ARM), ANSI/MIL-

STD-1815A (22 January 1983), supersedes MIL-STD-1815 (10 December

1980).

Official description of the Ada language.

[WICH82] Wichmann, B.A.; J.C.D. Nissen; et al., Ada-Europe Guidelines for Ada

Compiler Specification and Selection, Ada Letters, I11-I (October

1982) pp. 37-50.

Provides a list of questions to be used in selection of Ada

compilers, used as primary basis for this paper.

49

ACRONYMS

ACEC Ada Compiler Evaluation Capability

ACVC Ada Compiler Validation Capability

AJPO Ada Joint Program Office

ARM Ada Language Reference Manual, ANSI/MIL-STD-1815A

DOD Department of Defense

ECSPO Embedded Computer Standardization Program Office

HOL High Order Language

VDD Version Description Document

51

dI&

JW7-. -Avim

jl j 11
(16n

RKBI
NMI ME

